Abstract
There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9–3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1–∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5–1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.
Original language | English |
---|---|
Pages (from-to) | 1271-1281 |
Number of pages | 11 |
Journal | American Journal of Human Genetics |
Volume | 111 |
Issue number | 7 |
DOIs | |
State | Published - 11 Jul 2024 |
Keywords
- change of management
- clinical genome testing
- clinical utility
- diagnostic equity
- genetic testing
- low- and middle-income
- rare disease
- rare genetic disease
- whole-genome sequencing