Abstract
Background: The emergence and spread of extended-spectrum β-lactamases (ESBLs), especially CTX-M, is an important public health problem with serious implications for low-income countries where second-line treatment is often unavailable. Knowledge of the local prevalence of ESBL is critical to define appropriate empirical therapeutic strategies for multidrug-resistant (MDR) organisms. This study aimed to assess and characterize the presence of ESBL and especially CTX-M-producing Escherichia coli MDR isolates from patients with urinary tract infections (UTIs) and bacteremia in a rural hospital in Mozambique. Materials and methods: One hundred and fifty-one E. coli isolates from bacteremia and UTI in children were screened for CTX-M, TEM, SHV and OXA β-lactamases by polymerase chain reaction and sequencing. Isolates carrying CTX-M group 1 β-lactamases were further studied. The resistance to other antibiotic families was determined by phenotypic and genotypic methods, the location of the blaCTX-M gene and the epidemiology of the isolates were studied, and extensive plasmid characterization was performed. Results: Approximately 11% (17/151) of E. coli isolates causing bacteremia and UTI were ESBL producers. CTX-M-15 was the most frequently detected ESBL, accounting for 75% of the total isolates characterized. The blaCTX-M gene is located in different plasmids belonging to different incompatibility groups and can be found in non-epidemiologically related isolates, indicating the high capacity of this resistance determinant to spread widely. Conclusion: Our data suggest the presence of a co-selection of third-generation cephalosporinresistant determinants in the study area despite limited access to these antibiotics. This highlights the importance of continuous surveillance of antimicrobial resistance of both genetic elements of resistance and resistant isolates in order to monitor the emergence and trends of ESBL-producing isolates to promote adequate therapeutic strategies for the management of MDR bacterial infections.
Original language | English |
---|---|
Pages (from-to) | 927-936 |
Number of pages | 10 |
Journal | Infection and Drug Resistance |
Volume | 11 |
DOIs | |
State | Published - 3 Jul 2018 |
Keywords
- CTX-M-15
- Enterobacteriaceae
- Multidrug-Resistance
- Resistance determinant location